
4. Introduction to Quantifiers

4.1 Introduction

We now have an understanding of the semantics of full sentences, definites, and � 1-place relations.

(1)

Expression Category ML Translation Denotation
it’s raining S rain! T

Smiley DP smiley

skateboards Vintr skateboards

n
;

o

teases Vtr teases

n D
;

E
;

D
;

E o

introduces Vditr introduces

⇢ ⌧
; ;

�
;

D
; ;

E �

But so far, we haven’t seen how to put these expressions together. That’s the focus of this handout.

To do this, we start to look at quantifiers. As with connectives, quantifiers are crucial to understand-
ing human reasoning and inference.

The approach we take follows from the 19th century philosophy Gottlob Frege. It requires us to
adopt a new metalanguage to replace PL. We will now work with FOL (First Order Logic).

4.2 Syllogistic reasoning

4.2.1 Introduction

Aristotle (384 BC – 322 BC) proposed a system of syllogistic reasoning in order to understand the
semantics of statements involve quantifiers like all and some.

Syllogisms are reasoning schemas which lay out a skeleton of a valid inference. For example:
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(2) All A are B
All B are C
All A are C .

We can use these to license specific inferences, e.g.:

(3) All citizens are eligible for jury duty
All individuals eligible for jury duty are eligible to work.
All citizens are eligible to work.

Syllogisms focus on four quantifiers: all, some, no, and not all (or some ... not). These comprise the
Square of Opposition (image from Wikipedia):

(4)

https://en.wikipedia.org/wiki/Square_of_opposition
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Note that Aristotle assumed his quantifiers had Existential Import:

(5) Existential Import:
A statement of No/All A are B implies that there is at least one A.

Modern logicians don’t assume Existential Import, but assuming it renders all and no closer to their
English equivalents.

4.2.2 Syllogisms, Sets, and Venn Diagrams

We can use the set theory we learned in the previous handout to understand how syllogisms work.

We can treat predicates like A and B in syllogisms as sets and perform our basic set theoretic
operations on them. Here’s an example:

(6) Jerry is either a citizen or an organ donor.
Jerry is not both a non-citizen and a non-organ donor.

The premise can be represented as below, where green means “Jerry is in this region”. This region is
derived by taking the union of the two sets.

(7)

Now we can derive the conclusion componentially, proving its equivalence to the premise.

(8)
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Let’s try an example on our own. Can we prove the following equivalence via the same method?

(9) Jerry is both a citizen and an organ donor.
Jerry is not either a non-citizen or a non-organ donor.

Let’s move to quantificational statements, starting with the positive quantifiers:

(10) a. All A are B: The region of A outside of B is empty.
b. Some A are B: The region where A and B overlap is not empty.

Graphically, the All statement is represented by crossing out the empty region.

(11)

The Some statement is represented by placing an individual in the non-empty region. Why are there
two pictures here?

(12)

Let’s prove this equivalence:

(13) All citizens are organ donors.
It’s not the case that some citizens are non-organ donors.

What about the negative quantifiers.

(14) a. No A is B: The region where A and B overlap is empty.
b. Not all A are B: The region of A outside of B is non-empty.

Observations:
i. Each negative quantifier is a negation of a positive quantifier.

ii. All four quantifiers are defined in terms of (non-)emptiness of sub-regions of A.

Let’s represent the negative quantifiers graphically (on the board).

Now we can prove some more complex syllogisms.
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(15) All Republican senators supported repealing Obamacare.
No democratic socialist supported repealing Obamacare.
No Republican senator is a democratic socialist.

Step by step:
i. Draw an empty domain of discourse with three properties.

ii. Cross out forbidden regions.
iii. Populate non-empty regions.
iv. Flip (non-)empty regions for any negations.
v. Check conclusion.

One more, valid or invalid?:

(16) No members of the Australian Nationals supported same-sex marriage
Some supporters of same-sex marriage were conservative.
Not all conservatives are members of the Australian Nationals.

4.3 Updating our metalanguage: individuals and predicates

Now we are in a position to start theorizing about the semantics of sentences comprised of predicates.

Our working metalanguage PL is not powerful enough to do this.

PL assigns truth values (T and F) to sentences. Thus we can use PL to understand the relationship
between “It’s raining”, and “It’s raining and it’s not snowing”, for example.

But we have no way of detecting the relationships between sentences like the following:

(17) a. Angela is a lawyer.
b. Angela is a poet.
c. Some poets are lawyers.
d. No lawyers are who are poets are also gardeners.

The relationships between these sentences are due to expressions below the level of the sentence.

We need a new, updated metalanguage to handle the meanings of sub-sentential expressions like
‘some’, ‘lawyer’, ‘Angela’, and so on. We will use FOL (First Order Logic).

4.3.1 The Syntax of individuals and predicates

FOL is an extension of PL, so all the features of PL still remain. A reminder:

A syntax for PL:

i. Any proposition p in a set of basic propositions Prop (e.g., rain!, snow!, hot!,
and cold!) is well formed.

ii. If � and  are well formed, then:
a. :� is well formed.
b. �^ is well formed.
c. �_ is well formed.
d. � !  is well formed.
e. � $  is well formed.

iii. Nothing else is well formed.
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The following is an abbreviated form of the above.

Let Prop be a set of propositions, and p 2ˆ
� WWD p j :� j �_� j �^� j � ! � j � $ �

Let’s add to it:

A syntax for FOL (not complete):

i. Any proposition p in a set of basic propositions Prop (e.g., rain!, snow!, hot!,
and cold!) is well formed.

ii. If � and  are well formed, then, :�, �^ , �_ , and � !  are well formed.
iii. Take Pred to be a set of n � 1-place relations (e.g., loves, lawyer, republican,

proud-of), and Inds to be a set of individual terms (e.g., smiley, frowny, toothy).
a. If R1 is a 1-place relation (a property) and a is an individual, R1.a/ is well

formed.
b. If R2 is a 2-place relation and a1;a2 are individuals, R2.a1;a2/ is well

formed.
c. If R3 is a 3-place relation and a1;a2;a3 are individuals, R3.a1;a2;a3/ is

well formed.
iv. Nothing else is well formed.

Can we simplify/generalize (iii) above?

Let’s use the abbreviated notation:

Let Prop be a set of propositions, and p 2ˆ
Let Pred be a set of n� 1-place relations, and Rn 2 Pred
Let Inds be a set of individual terms, and a1; :::;an 2 Inds
� WWD p j Rn.a1; :::;an/ j :� j �_� j �^� j � ! � j � $ �

Which of the following are well-formed formulas in FOL?

(18) a. :.rain! _ snow!/! hot!

b. ::^ loves.smiley; frowny/

c. lawyer.smiley; frowny; toothy/

d. skateboards.angel/^:proud-of.smiley;cool/

Let’s stop here, and figure out the meanings of FOL sentences so far.

4.3.2 The semantics of individuals and predicates

We need a way of interpreting FOL sentences like skateboards.angel/. Other than that, everything
is the same as PL.

Let’s remind ourselves of what model looks like from the previous handout.
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Models (from Handout 3)
A model M consists of:

i. A set of truth values fT;Fg
ii. A set of individuals U

iii. For any n > 1, a set of relations A✓ }.U1 ⇥ :::⇥Un/

iv. An interpretation function J KM.

We also already have interpretation rules for individual terms and relations, relative to a model.

(19) a. For any individual term a 2 Inds, JaKM 2 U
b. For any relation Rn 2 Pred, JRnKM ✓ }.U1 ⇥ :::⇥Un/

We’ve already seen examples of this. Here’s an example of a possible specification of J KM:

smiley

frowny

sterny

toothy

smiles

annoyed

skateboards

saxophonist

⇢
; ;

�

⇢
; ; ;

�

n
; ; ;

o

n
; ;

o

loves

teases

friend-of

proud-of

⇢ ⌧
;

�
;

D
;

E
;
D

;

E �

n D
;

E
;

D
;

E
;

D
;

E o
⇢ D

;

E
;

D
;

E
;

⌧
;

�
;

D
;

E �

n D
;

E o

Now we need an interpretation rule for predicates-with-arguments!



18 Chapter 4. Introduction to Quantifiers

(20) a. For any formula R1.a/D T iff JaKM 2 JR1KM

b. For any formula R2.a;b/D T iff hJaKM;JbKMi 2 JR2KM

c. For any formula R3.a;b;c/D T iff hJaKM;JbKM;JcKMi 2 JR3KM

d. and so on...

How do we simplify/generalize this?

(21) a. For any formula R1.a/D T iff JaKM 2 JR1KM

b. For any formula Rn.a1; :::;an/D T iff hJa1KM; :::;JanKMi 2 JRnKM

Which of the following formulas of FOL are true relative to M above?

(22) a. smiles.cool/

b. :smiles.sterny/

c. friend-of.angel;cool/_:annoyed.frowny/

d. saxophonist.smiley/! :teases.frowny;sterny/

Come up with two true and two false sentences of FOL relative to M.

4.4 Mapping English to FOL: individual and predicates

In the last handout we had some rules mapping English to predicates/individual terms. To recap:

(23)

Expression Category ML Translation Denotation
it’s raining S rain! T

Smiley DP smiley

skateboards Vintr skateboards

n
;

o

teases Vtr teases

n D
;

E
;

D
;

E o

introduces Vditr introduces

⇢ ⌧
; ;

�
;

D
; ;

E �

Now we need rules getting us from definite DPs (e.g., proper names, definites, pronouns) and VPs to
sentences.

(24) Rule 1: Subject-intransitive VPs

If DP a and VP R1, then

S

VP

V

Predicate

DP

Subject

 R1.a/

The next rule handles adjectival and nominal predicate, assuming English is and a are vacuous.
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(25) Rule 1a: Nominal predicates

If DPi  a and NP R1, then

S

VP

DP2

NP

Predicate

D

a

V

is

DP1

Subject

 R1.a/

(26) Rule 1b: Adjectival predicates

If DP1  a and AP R1, then

S

VP

AP

Predicate

V

is

DP1

Subject

 R1.a/

What are the FOL translations of the following?

(27) a. Smiley is happy.
b. Two is a prime number.
c. If Frowny is annoyed, then Toothy is not skateboarding.
d. Frowny is not annoyed and two is not a prime number.

Looking at the model M two pages back, are the following English sentences true or false?

(28) a. Smiley is a saxophonist.
b. If Cool is annoyed then Angel is not smiling.
c. Either Sterny is annoyed or Angel skateboards.
d. It’s not the case that Angel is not smiling.

Next we need a semantics for English transitives.

(29) Rule 2: Transitive predicates

If DPi  a, DPj  b and V R2, then
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S

VP

DPj

Object

V

Predicate

DPi

Subject

 R2.a;b/

What are the FOL translations of the following?

(30) a. Kim loves Sandy.
b. If either Smiley is skateboarding or Frowny is annoyed, then Frowny teases Smiley.
c. 2 is not greater than -3.
d. Neither Sterny loves Cool nor Cool teases Sterny.

Based on the model M, are the following sentences true or false?

(31) a. Frowny teases Sterny.
b. Cool loves Smiley and Toothy doesn’t love Cool.
c. If Frowny is annoyed then he teases Cool.
d. Either Angel doesn’t skateboard or Toothy loves Smiley.

You’ll extend this to ditransitives, transitive nominals/adjectives in your homework.

4.5 Quantification and FOL

4.5.1 The Syntax of Quantification in FOL

We understand how to combine individual terms with predicates, we can move to quantification.

We need to finish defining the syntax of FOL. Now we’ll include quantification.

The most crucial addition is a set of variables. These are just like individual terms (e.g., smiley,
toothy), except their value is undetermined.

Like individual constants, variables can be arguments of predicates.

A syntax for FOL (complete):
Take Prop to be a set of basic propositions (e.g., rain!, snow!, etc.)
Take Pred to be a set of n� 1-place relations (e.g., teases, skateboards, etc.)
Take Inds to be a set of individual constants (e.g., smiley, toothy, etc.)
Take Var to be a set of individual variables (e.g., x, y, etc.)

i. Any proposition p 2 Prop is well formed.
ii. If � and  are well formed, then, :�, �^ , �_ , and � !  are well formed.

iii. If Rn 2 Pred and a1; :::;an 2 Inds[Var, then Rn.a1; :::;an/ is well formed.
iv. If x 2 Var and � is well formed, then 8xŒ�ç and 9xŒ�ç are well formed.
v. Nothing else is well formed.

Which of the following are well formed formulas in FOL?
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(32) a. smiles.x/

b. 8xŒsmiles.x/ç

c. 8xŒsmiles.cool/ç

d. 9xŒsmiles.x/^ lawyer.y/ç

e. 9smileyŒskateboards.smiley/ç

f. 9Œskateboards.smiley/ç

g. :9xŒskateboards.x/^8yŒskateboards.y/! 8zŒhappy.z/! introduce.x;y;z/ççç

4.5.2 The semantics of the universal quantifier

The FOL sentence 8xŒ�ç is ‘universally quantified’.

J�KM

xWDd
means take � and replace every instance of JxKxWDd with d .1

(33) Semantics of universal quantification

J8xŒ�çKM D T iff U ✓ fd j J�KM

xWDd
g

Working through an example:

(34) J8xŒsmiles.x/çK D T

= U ✓ fd j Jsmiles.x/KxWDd g
= U ✓ fd j JxKxWDd 2 JsmilesKg
= U ✓ fd j d 2 JsmilesKg
= U ✓ JsmilesK

Slightly more complicated:

(35) J8xŒintroduces.smiley;x;cool/çK D T

= U ✓ fd j Jintroduces.smiley;x;cool/KxWDd g
= U ✓ fd j hJsmileyK;JxKxWDd ;JcoolKi 2 JintroducesKg
= U ✓ fd j h ;d; i 2 JintroducesKg

There are other equivalent ways of conceptualizing universal quantification.

(36) J8xŒsmiles.x/çK D T iff for every d 2 U , d 2 JsmilesK
(37) Where U D fa;b;cg, J8xŒsmiles.x/çK D T iff a 2 JsmilesK & b 2 JsmilesK & c 2 JsmilesK

Here’s a new M. U D
n

; ; ;

o
and J KM:

smiley

frowny

sterny

toothy

1We need an extra stipulation to ensure that x is not ‘re-quantified’ within �.
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annoyed

saxophonist

n
; ; ;

o

n
; ;

o

loves

proud-of

n D
;

E
;

D
;

E
;

D
;

E o

n D
;

E
;

D
;

E
;

D
;

E
;

D
;

E o

Are the following T or F relative to M above?

(38) a. 8xŒsaxophonist.x/ç

b. 8xŒsaxophonist.smiley/ç

c. 8xŒsaxophonist.x/_ annoyed.x/ç

d. 8xŒloves.x;smiley/ç

e. 8xŒsaxophonist.x/! annoyed.x/ç

(e) in (38) is a very common combination of operators. Let’s explore it a bit:

(39) J8xŒsaxophonist.x/! annoyed.x/çKM D T iff
U ✓ fd j Jsaxophonist.x/! annoyed.x/KM

xWDd
g

U ✓ fd j Jsaxophonist.x/KM

xWDd
D F or Jannoyed.x/KM

xWDd
D Tg

U ✓ fd j d … JsaxophonistKM or d 2 JannoyedKMg

This states that it’s impossible for an individual to be a saxophonist while not also being annoyed.

A much more intuitive, and totally equivalent, characterization:

(40) J8xŒsaxophonist.x/! annoyed.x/çKM D T iff JsaxophonistK ✓ JannoyedK

So the .8:::!/ combo reduces to subsethood.

(41)

4.5.3 The semantics of the existential quantifier

The FOL sentence 9xŒ�ç is ‘existentially quantified’. Here’s the semantics:
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(42) Semantics of existential quantification

J9xŒ�çKM D T iff fd j J�KM

xWDd
g ¤ ;

Working through an example.

(43) J9xŒsmiles.x/çK D T

D fd j Jsmiles.x/KM

xWDd
g ¤ ;

D fd j d 2 JsmilesKMg ¤ ;
D JsmilesKM ¤ ;

A more complicated example:

(44) J9xŒintroduces.smiley;x;cool/çK D T

= fd j Jintroduces.smiley;x;cool/KxWDd g ¤ ;
= fd j hJsmileyK;JxKxWDd ;JcoolKi 2 JintroducesKg ¤ ;
= fd j h ;d; i 2 JintroducesKg ¤ ;

Thus 9xŒ�ç means that � is true of at least one individual. Here are some equivalent ways of
conceptualizing existential quantification.

(45) J9xŒsmiles.x/çK D T iff for at least one d 2 U , d 2 JsmilesK

(46) Where U D fa;b;cg, J9xŒsmiles.x/çK D T iff a 2 JsmilesK or b 2 JsmilesK or c 2 JsmilesK

Let’s go back to the model M above. Are the following statements T or F relative to M?

(47) a. 9xŒsaxophonist.x/ç

b. 9xŒ:saxophonist.x/_ annoyed.x/ç

c. 9xŒloves.x;smiley/ç

d. 9xŒsaxophonist.x/^ proud-of.x; toothy/ç

(d) in (38) is also a very common combination of operators. Let’s explore:

(48) J9xŒsaxophonist.x/^ annoyed.x/çK D T

fd j Jsaxophonist.x/^ annoyed.x/KxWDd g ¤ ;
fd j d 2 JsaxophonistKg\fd j d 2 JannoyedKg ¤ ;
JsaxophonistK\ JannoyedK ¤ ;

This states that the overlapping region of saxophonist and annoyed is not empty.

Again, we have a simpler (equivalent) shortcut.

(49) J9xŒsaxophonist.x/^ annoyed.x/çK D T iff JsaxophonistK\ JannoyedK ¤ ;

So the .9:::^/ combo reduces to non-empty overlap.
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(50)

4.6 Mapping English to FOL: Quantifiers

Remember that we already have a rule for interpreting English DPs.

Semantics of definites:
If an NP is definite, ŒNPç d, such that JdK is an individual in U .

Can quantifiers be interpreted via the same rule? No! Why not? Arguments from Heim and Kratzer
1998:§6.1.

Argument 1: Assuming JSwedish studentK ✓ JstudentK, individuals support upward inferences.
Ask yourself why.

(51) Smiley is a Swedish student.
Smiley is a student.

However, not all quantifiers have the same property.

(52) No one is a Swedish student.
6ˆ No one is a student.

Argument 2: Assuming JdogK\ JcatK D ;, individuals lead to contradictions.

(53) Smiley is a dog.
Smiley is a cat.
(contradiction)

Again, this isn’t true of all quantifiers.

(54) Something is a dog.
Something is a cat.
(consistent)

Obviously, we need new rules for quantificational DPs. Assume VP is intransitive or has a definite
object throughout.

(55) Rule 4a: Quantificational subject: every
If NP P and VP Q, then
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S

VP

Predicate

DP

NP

Restriction

D

every

 8xŒP.x/!Q.x/ç

(56) Rule 4b: Quantificational subject: some/any
If NP P and VP Q, then

S

VP

Predicate

DP

NP

Restriction

D

some/any

 9xŒP.x/^Q.x/ç

(57) a. Every saxophonist skateboards.
b. Every saxophonist loves Smiley.
c. Some student doesn’t smoke.
d. Either every saxophonist smokes or some lawyer doesn’t tease Frowny.

Looking at the most recent model M, are the following English sentences true or false?

(58) a. Every saxophonist is annoyed.
b. Some annoyed individuals are saxophonists.
c. Some individual who is proud of Smiley loves Toothy.
d. Every saxophonist is proud of Frowny.

Now we can use our theory of quantifiers to understand syllogistic reasoning. Is the following valid,
why? why not?

(59) Some Mediterranean countries are in the EU.
It’s not the case that any EU countries border the Indian Ocean
It’s not the case that any Mediterranean countries border the Indian Ocean

4.7 Possible paper topics

✏ There are various proposals for the semantics of exceptives, such as unless and except,
including Fintel 1992, Leslie 2008, Nadathur 2014, and Nadathur and Lassiter 2014. Some
proposals suggest unless has a different meaning depending on whether it is embedded beneath
a positive or negative quantifier. Are there cross-linguistic insights on this question? What
open questions are there in the literature?
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✏ Coppock and Beaver 2015 observe that Anna didn’t eat the only carrot cake (at the bake sale)
has a very different interpretation to Anna didn’t bake the only carrot cake (at the bake sale).
They analyze the difference due to an ambiguity in semantics of the only. But how much of a
role does the verb play? See also the response in Bumford 2017.

✏ Bumford 2015 observes cases in English which our basic notion of every doesn’t obviously
extend to, such as Every year Mary wrote a more interesting book or Every house on this street
has more and more Christmas decorations. What are the conditions that give rise to this type
of reading? How do notions of time or space play a role?

✏ Certain expressions have been analyzed as being interpreted variously as 8 and 9 depending
on their environment. This is famously described in relation to reciprocal expressions like
each other by Dalrymple et al. 1998. Some more recent work focuses on plurals with the like
Löbner 2000 and Kriz 2015. What are the cross-linguistic applications of this? For example,
Bittner and Hale 1995 suggest that Warlpiri has a word ambiguous between an every- and
many-type meaning (see also Bowler 2014 on Warlpiri). Bar-Lev and Margulis 2014 suggest
something similar for a quantifier in Modern Hebrew. What are the empirical and theoretical
foundations of these kinds of expressions? What predictions do these competing theories
make and are they borne out?

4.8 Further reading

✏ ⇠3200 years on, syllogistic reasoning remains as relevant as ever. See Horn 1989 for a
very influential, classic text in lingustics about negation including its role in syllogisms. See
also Khemlani and Johnson-Laird 2012 and Tessler and Goodman 2014 for some modern
approaches to syllogisms in language and the psychology behind them.

✏ There are many explorations of the mapping of logic (including FOL) to natural language:
Partee, Meulen, and Wall 1990, Gamut 1991a, 1991b, Carpenter 1997, and Winter 2016 are
excellent.

✏ Probably the most influential exploration of how syntax maps to semantics is Heim and Kratzer
1998, itself applying Montague’s theories (e.g., Montague 1973) to a GB-style syntax.

✏ An excellent recent theory of the syntax-semantics interface is outlined in Barker 2015, 2016
and Barker and Shan 2014.
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