/. Meanings for complex structures

Introduction
In Chapter 6, we introduced the notion a new metalanguage, TY. In this Chapter, we’ll flesh it out.

This will allow us to propose meanings for any kind of constituent, including VPs, NPs, adverbs,
adjectives, prepositions, connectives and so on.

We can also replace our strategy of invoking ‘construction specific rules’ (e.g., like Rule Q and Rule
D, and rules for each connective), and unify everything under one kind of system.!

For this reason, the material in this chapter will serve to link everything together so we can build a
fully specified semantic grammar for some fragment of English.

Functions
Basics of functions

As in the previous handout, the basis of this theory is the notion of ‘function’.

A function is a special type of relation, i.e., a set of ordered pairs. Specifically, a function is a relation
R, such that if (x,y) € R and (x,z) € R, then x = z. That is, no element can be paired with more
than one element.

When talking about a function, and (x, y) € R, I’ll say the following equivalent things:

(1) a. “xmapstoy (in R)”
b. “Rmapsxtoy”
c. most importantly: “R(x) = y”

Here’s a specification of a function. The ‘domain’ is the set of things on the left, and the ‘range’ is
the set of things on the right.

IThis goal is called ‘type-driven translation’ (Sag and Klein 1981), we will see why.



2 Chapter 7. Meanings for complex structures

) '@ T |
R @ — T

—F

S -1

We could also say that R is a function “from” {@ ,@ , , } “to” {T,F}.

Types of functions

3) A relation R is a function iff each x in the domain of R is mapped by R to at most one
element in the range of R. (a function cannot ‘doubly map’ anything).

Describe a relation which is not a function.

(4) A function f is fotal iff every element in the domain of f has a value in the range of f. If f
fails to meet this condition, it is called a partial function.

Is (2) a total or partial function? What about this one?
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6) A function f is onto iff every element in the range of f is the value of some element in the
domain of f.

Is (5) onto?

@) A function f is one-to-one iff no member of the range is assigned to more than one member
of the domain.

Is the function below one-to-one?
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>
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® A function f is bijective or a one-to-one correspondence iff it is total, onto, and one-to-one.
(i.e., there’s a unique mapping for each member of the domain, and for each member of the
range.)

(10) For each of the following, say whether it’s a function, and if yes whether it is total and/or
=
onto (adapted from Potts 2007). Assume the domain is {@ @ , , } in each case.
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f. the relation R from nodes to nodes in tree structures that maps each node to its daughter(s)
g. the relation R! from nodes to nodes in tree structures that maps each node to its mother(s)
h. a function from x2 to the value(s) of x
i. a function from x to the value(s) of x?2

We can specify the domain and range of a function using the following notation: f : A — B, i.e.,
the function f maps members of A to members of B.

Which of the functions in (10) are specified f : U +— {T,F}? How would you specify the rest?

A useful concept: function composition.

(11) The composition of f: A+ Bandg: B+ C,isafunctiongo f : A C.

go f(d)=g(f(d))
What would be the value of b o ¢( @ ), or equivalently b(c( @ )).

(12) (from Benthem et al. 2016)
The successor function is s : N — N is given as s(n) = n + 1. How would you characterize
the composition of s with itself?

Types

The function-based approach to semantics relies on a notion of ‘types’. Implicitly, we have catego-
rized expressions in our metalanguage by the kinds of objects they denote in the model.
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Expression Category ML Translation Denotation

it’s raining S rain!
Smiley DP smiley @
(3  Skaeboards Vi skateboards HONCH
teases Vi teases { ( @ @ < @ > }
introduces Vit introduces { < @ @ > < @ . ©> }
every D every (P.O)IPCO }

This is essentially what is meant by typing: this way of classifying the expressions in the metalan-
guage. So let’s see how to do this in depth, and extend it to any kind of expression.

The basic types

Our metalanguage is named TY (from Gallin 1975), or ‘type theory’. Here, we start off with two
basic types for expressions.

We have introduced the two basic types already. The first basic type is ¢. 7 is assigned to any ML
expression which denotes a truth value (¢ for truth value). Which of the following expressions are
type ¢?

(14) rain!

teases(smiley)

smiley

V x[annoyed(x) — Iy [proud-of(x, y)]]
the(saxophonist)

A

angel

dx[skateboardsx] — Vy[annoyed(y)]

I =

The other basic type is e (for entity). e is assigned to any ML expression which denotes an individual.
Which of the above expressions are type e?

These are the basic types because the denotations cannot be deconstructed into more basic types.

(15 a.  [smiley] = ()

b. [the(saxophonist)] = @ type e
c. [frowny] = @

(16) a. [rain!]=F
b. [annoyed(smiley)] =F type t

c. [3x[skateboards(x)] =T

In order to keep things uniform: for the set of possible truth values, {T,F}, we can write D; (the
domain of truth values). For the set of possible individuals U, we can write D, (the domain of
entities).

The following are equivalent, {T,F} = D; and U = D,.
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Characteristic functions

In the last handout, we motivated the need for a notion of functions in our model.

It turns out we can replace the sets of individuals (used for denotations of predicates like skateboards)
with isomorphic ‘characteristic functions.” So let’s figure out how to do that.

The characteristic function of set a A from some domain U is a function that maps all members of A
to T and all elements of U that are not members of 4 to F (from Benthem et al. 2016).

For example, the function representing the property of being divisible by 3, on the domain of integers,
would map the numbers ...,—9,—6,-3,0,3,6,9,... to T, and all other integers to F.

By definition, we can find a unique characteristic function (or CF) for each set of individuals. The
set of CFs f : D¢ > Dy is isomorphic to p(U).
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(19) =00V

Another specifying the domain and range of a function is using superscript, such that A — B can
be written as B4. This notation makes sense when start to think about the numbers of functions
involved (from Potts 2007).

20 LetA={E).©.€)}and B={T.F}.

a. How many total functions f are there such that f : A +— B?
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b. How many objects are there in g(A)? This result helps us understand why the powerset
is sometimes written as 24.
c. How many objects are in A x B?

A rough and ready definition for CFs:

2n Characteristic function:
A function f from a set D, to the set Dy is a characteristic function iff for every d € U:

Tifd eU
Jd)= Fifd ¢U

Characteristic functions as meanings of predicates
With no loss of information, we can switch up our denotations so that 1-place predicates map to CFs

instead of sets. Here’s a new specification of [ [M.

(22) a. [smiles]M = "@ T | b. [annoyed]™ = '@ > F |
@ —F @ — T
~F ~F
—F — T
@ —T @ — F

© T © ~T1]

Because sets and characteristic functions (CFs) are isomorphic, we should be able to comfortably
switch between them as the need arises.

Formerly, this was our rule for interpreting sentences of FOL consisting of a 1-place predicate (like
annoyed) and an individual argument (like frowny).

23) a. [P(a)] =Tiff [a]M e [P]M
b. [annoyed(frowny)] = T iff [frowny]™ € [annoyed]™
But now, annoyed denotes a CF. There’s a direct connection between the ML and the denotation.
24  a [P@M=Tiff [PM([a]™) =T
b. [annoyed(smiley)]™ = T iff [annoyed]™ ([smiley]M) = T
What are the values of the following?

(25) a. [smiles]M([toothy]™) =
b. [annoyed]™([smiley]™) =
c. [annoyed]™([angel]M) =
So 1-place predicates denote CFs, functions which map individuals in D, to truth values in Dy.

The set of all functions from D, to D; (i.e., the set of all CFs) is written as D, ;).

Because 1-place predicates like skateboards and smiles denote objects in D, ;), we assign them
the type (e,?). This table summarizes what we have so far.
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A TY expression like...

rain!

..1Is type...

...so its denotation is in ... ~ An example denotation
D, TorF

smiley e D, @
26) © e

smiles (e,t)

Defining possible types
Repeating what’s written above: the set of all functions from D, to Dy is written as D, ;).
Here we took two sets of objects A and B, and defined a third one as the set of functions mapping

from objects in A to objects in B. We can keep doing this to define more and more types of
expressions.

(27)  Possible Types:
a. eisatype
b. tisatype
c. Ifo and 7 are types, then (o, T) is a type.
d. Nothing else is a type.

Some examples of types for metalanguage expressions

(28) a. e,t
b.  (e,e),(t,1),(e,1),{t,e)
c. (e /fe.e)).{e(r.1).{e.(e.1)).{e.(t,e)).(t.{e.e)). (t.(t,1)).{t. {e,1)),(t,{t.e))
d. ({e.e).e).((r.1).e).((e.1).e).((t.e),e).{(e,e).1), ((t,1).1),({e.1).1).{(t,e).1)
e.  ((e.e).(e.e)).{(e.e). (1.1)),({e.e).{e,1)),({e.e).(t.e)). ((t.7),(e.e)). {(t.1).(1.,1)),
((r.1).{e.1)). {(t.1).(t.€))
f. ...and soon

So an expression may have any one of the above types or an infinite number of other types. Why are
the following not possible types in TY?

29) a. fe,e,t)
b.  (s,t)

This kind of definition of types in (27) is totally standard, such that semanticists often gloss over it,
but it’s worth exploring a bit to get a handle on it (from Potts 2007).

(30) Consider the following definition of a (toy) type space:

a. oand e are types
b. If o isatype, then (f,0) is a type.
c. Nothing else is a type.

Are the following in this type space?
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3l a.  (f,0)
b {o.7)
c. (o,e)
d. (. (1. (f, o))

The type definition in (27) will be used to categorize every expression of TY. No expression can
have a type not derived by (27).

Denotations for typed expressions

How do we know what expression has what type? By the kind of object it denotes.

The expression smiley is type e, because its denotation ( @ ) is a member of D,.. The expression
rain! is type ¢t because its denotation (T) is a member of D;.

We always know what type an expression is by its denotation. If the denotation of an expression is a
member of Dy, then the expression is type X.

For this reason, models need to supply a set D x for every type X. These sets are called ‘domains’,
not to be confused with the domain of a function. I recognize this is confusing, so I'll spell these as
‘d-domains’ (for denotation-domain perhaps).

(32) Possible d-domains:
a. D, isad-domain (i.e., U)
b. Dy isad-domain (i.e., {T,F})
c. If Dy and D; are d-domain, then D4 ;) is a d-domain.
d. Nothing else is a d-domain.

Now there is a set of denotations for expressions of every type defined in (27).

(33) What are all the functions in the d-domain D, ;)?

What type is =? What is [—]?

(34) Let’s say D, = { @ ,@ }. There is a set of function D (e ¢) ;). What is the domain of
these functions (i.e., the set of possible inputs)? How many functions are in D (¢ ¢),r)?

(35)  Let’ssay D, ={ @ @ }. Give an example of a function in D (e 1) 7).
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Function application

Function by nature take inputs and spit out outputs. It’s with this simple intuition that we model
how the meanings of complex constituents in NL are composed from the meanings of smaller
sub-constituents.

For example, the meaning of the sentence smiles(smiley) is type ¢. It has two sub-constituents:
smiles of type (e,?) and smiley of type e.

TY allows us to combine these two sub-constituents to make the larger one by function application.
We’ll use the symbol + for functional application, following Winter 2016.

(36) smiles, ;) + smiley, = smiles(smiley),
Function application (4) is commutative, so:

37 smiley, + smiles, ;) = smiles(smiley),
2

A generalized definition for function application:

(38) Function application
f(a,r) +as =ag + f(a,r) = f(a):

For each of the following, say whether the + operation is defined, and if so, what is the type?

39) a. e+ (e (e,t))
b.  ((e,(e,t)),{e 1))+ (e e)
c. ({e.{{e.r).1)).{t.1)) +e
d.  {{e,1),t)+ (e,t)
e. (e, {e.r))+ ({e.(e.r)).{e.1))
f.  ((e.e),(e,t))+e

What is the value (plus its type) of each of the following?
40) a. the-mother-of . .y + cool, =
b.  frowny, + teases (o)) =

C. snowman, ;) + talented . ;) (c.r)) =
d. teases. (o)) +snowman ;) =

When A + B is undefined, we call it a ‘type mismatch’. Type mismatches are an extremely useful
way to account for ungrammaticality and blocked readings (for example, see Collins 2018).

+ gives us a very powerful tool for mapping syntax to semantics, according to this schema:

(41)  Interpreting a branching tree:
Let C be a non-terminal node in a tree with daughters A and B.
If A~ aand B ~~ f8,then C ~ a+ 8.

2The calculus defined by (38) is an Ajdukiewicz Calculus.
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C
a+p
A B
! p

This theory of the syntax-semantics interface has a strict logic, and forces decisions on us for better
or worse. This is important to get the hang of for problem solving/reasoning about the denotations.

42) What is the type of o? NB: there are two answers.

Yie,t)

PN

a0 Blele.r))

Interpreting intransitives

Now we have enough to build a theory of intransitive sentences. Take a tree:

S

N

DP VP

Smiley skateboards

We can figure out the ML translation, and the denotation of every node in the tree.

43) Terminals:
If a node dominates just a lexical item and nothing else, its translation is the translation of
the lexical item.

(44) a. DP ~> smiley,
b. VP ~- skateboards, ;)

The translation of non-terminals is simply calculated via function application.
(45) S ~~ skateboards(smiley);

In terms of denotation, the interpretations of simple expressions are supplied by [ [M-8.

46) a. [smiley]™-$ :@
b. [skateboards]™-& = @ T

@»—)F

For complex expressions, we appeal the following rule.
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(C)) Interpreting functions w/ arguments:
[x(B)] = [e]([B])
(48)  [skateboards(smiley)|M-8 =

What about adjectival predicates? Let’s define a meaning for English be in its function selecting
adjectival and nominal predicates.

49) s~ idie ) (e,)
id denotes a function which maps any CF to itself. What would this look like visually?

(50) a. id(annoyed) = annoyed
b. id(cat) = cat

What are the translations (plus types) of the nodes in this tree?

S

N

DP VP

N

Smiley V AP

is annoyed

What about nominal predicates? What are the translations and types of the nodes in this tree? You’ll
have to propose a semantics for a.

S

N

DP VP

N

Smiley V DP

N

is D NP

a saxophonist

Transitive predicates

So far so easy. Transitive predicates are a little trickier as they have two arguments. Therefore, when
they combine with their first argument, they are not yet truth value denoting.

We take ML expressions like teases to be type (e, {(e,?)). They need two arguments to be type 7.

What is the type and value of teases + smiley? What about (teases + smiley) + frowny? What is
the ML translation of each node in the following tree?
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S

T

DP VP

PN

Smiley V DP

teases Frowny

The translation of S is (teases(frowny))(smiley). We usually omit the first set of brackets, so
teases(frowny) (smiley). Bare in mind this is “VOS” ordering (to borrow terminology from syntax).

The denotation of teases is slightly different to what we were working with in previous weeks.

D reviowsly) [teases] = { (D). @) (©. O )(©.©). (©.O) |

However, we can construct functions which are totally isomorphic to sets of ordered pairs. First, we
can construct a function, isomorphic to (51), which maps each individual to the set of individuals
who tease them. NB: this isn’t a possible denotation in TY, but it’s an intermediary step.

2 ® -~ )
@ 0

© ~i© |
© ~{O |

Now of course we know that each set of individuals has a corresponding CF. If we sub in the right CF
above, we get a function from individuals to functions from individuals to truth values: (e, (e,?)).

[teases] =

- _@ ,_,F__
T

® -

=T

—F

»—>F_
—F
—F

> F

1T

|—>F_
> F
> F

—T

BIOIGIBXBIOIGIBYBIOIGIBAGIOIE,

T
—F
—F

> F

(53)  [teases] = - -
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With this function, let’s evaluate the translations, types, denotations of each constituent below.

S

N

DP VP

N

Sterny 'V DP

teases Frowny

Previously we treated the denotations of transitives as sets of pairs, but now we use functions in
D¢ (e,r)) like (53). In a compositional theory, these views make a difference. But, mathematically,
these two types of denotations are indistinguishable.

This insight traces to M. Schonfinkel and is thus sometimes called Schonfinkelization. Start with a
function f : A+ (B + C) and then define the equivalent function f’: (A x B) — C as follows:

f'({a,b)) = f(b)(a)
For linguists: V/({S, 0)) = V(0)(S)
54) (from Benthem et al. 2016):

a. Describe a function > : (N x N) > Dy.
b.  Describe the isomorphic function > : N+ (N +— D;)

A linguistic theory might offer many different potential ways of explaining the deviance of some
example. The semantic typing of expressions like verbs provides an insightful way to describe the
unacceptability of a sentence.

(55) How would you explain the deviance in the following examples?

a. *Ed devoured.
b. *Ed glimpsed the dog the printer.

A linguistic theory could therefore provide multiple ways to explain unacceptability, some semantics,
some syntactic, and so on. The difficulty is determining how to settle on one of the options, and it
can be even more difficult to figure out how, or whether, to remove redundancies in one’s account.

A case study: negation

We’ve already analyzed structures like the following.

(56) S ~r tall(frowny);
DP VP frowny, tall ;)
Frowny V AP ld((e,t),(e,t)) tall(e,,)

is tall
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Now we can revisit negation, in a way that is more sensitive to English syntax. Previously, our rule
for negation was: where S ~» ¢, and S™ is the negated form of S, then S™ ~~ —¢.

It would be nice to get rid of this non-compositional S™ business. We can easily plot out the desire
behavior of a VP-negation.’

(57) S ~ neg(tall) (frowny);
/\ /\
DP VP frowny, neg(tall) . ;)
Frowny Neg VP neg tall;, ;)
not V. AP id((e,1),(e,)) tallie,y)
is tall

(58) What type will this negative neg-operator be?

(59) [neg] is a function which takes as its input a (a.) and returns as its output a (b.).
a. 7?
b. 7?

(60)  For any function f of type (e,1), like [tall], describe the function [neg]( f).

(61) @ T

If [tall] = | &)+ F |, what is [neg(tall)]?

@|—>T

Now we can just replace our S™ rule with the rule not ~~ neg.

Defining function-denoting expressions

Now we are comfortable using function-denoting expressions of various types. But so far we’re
limited to the ones supplied by the constants of our metalanguage, e.g., teases, skateboards, neg,
id and so on.

But sometimes semanticists need to specify more complicated functions. Luckily TY gives us a way
to do that, using the A-operator.

Adding 1 to the metalanguage

This is how we specified id above using English prose.

(62) [id] is the function which maps a function f in D, ;) to itself.

The A-operator allows us to write a ML expression which tells you exactly how to interpret it.

E2]

(63) a.  Af{e,r) means “a function which maps a function f in D ;...

3For those of you worried about the word order, imagine we are analyzing Spanish/Italian/Mandarin.



7.5 Defining function-denoting expressions 15

b. instead of “to itself” we can write . f
c. therefore, we can rewrite id as A f(¢ ;). f

The symbol A tells us that it is a function.

The dot separates the specification of the function’s argument and the definition of the
function’s result. Before the dot, writing * f(, ;)” introduces ‘ f~ as an ad hoc name for
the argument of the function. The type (e, ) in the subscript of f tells us that this
argument can be any object in the d-domain D, ;).

The re-occurrence of © f after the dot tells us that the function we defined simply returns
the value of its argument. (paraphrased from Winter 2016)

Describe the following functions in words, and their types:

64) a  [Axe.x]
b.  [AP,).smiley]
c. [APyy.P(smiley)]

Let’s rewrite neg and id using lambdas.

(65) a. id = Af(e,t)-f
b. neg=

A more formal definition:

(66) Let o be an expression of type 7, and u be a variable of type o:

a. then Au.« is an expression of type (o, 7),
b. [Au.a]® = the function f : Dy > Dy, such that for all d € D, f(d) = [a]8k>4]
Functional application with A

To warm up, let’s just rewrite our trees with neg and id. Remember we interpret branching structures
using +, so each time this will just involve putting one branch as the argument for the other.

67) S ~ AP. P(tall)(frowny);
DP VP frowny, AP.P(tall) s
Frowny V AP AP P ) (er)y tallie s

is tall
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(68) S (Ag.Ax.—g(x)(Af. f(tall)))(frowny),
/\ /\

DP VP frowny, Ag.Ax.—g(x)(Af. f(tall)) 1)

| N T
Frowny Neg VP AgAX.7Z(X) ((e,1),(e,1)) Af. f(tall) 1)

VAN T

not V. AP A-Fenrenyy talliey)

is tall

Obviously these terms are almost unreadable. Luckily, we can use a way to abbreviate lambda terms
called B-reduction.

(69) B-reduction (informal):
Any term (Au.¢) () can be reduced by the following steps

a. delete ‘Au.’
b. delete ‘()
c. replace any unbound instance of u inside ¢ with .

Some practice

(70) (Ax.annoyed(x))(smiley)
(Ax like(x))(v)

(Ax.like(y))(x)
(Ax.run)(x)

(AP.Ax.P(Ay.admire(y)(x)))(Af. f(ali)(chris)

oo os

Armed with S-reduction, we can drastically simplify the trees above.

(71) S ~ O
/\
DP/\VP frowny, O
Frowny \AP AP-P((eﬁ(e,t)
(72) S O
/\
DP/\VP frowny, O
/\
Frowny Neg/\ﬁ AgAX.7E(X) (1), (e,t)) O
not VAP )tf.f((eﬁ(e,t)

is tall
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We also get English sentences with definite DP predicates. Propose a lexical entry for is here
(assuming it’s a different is from the A f. f one above).

(73) S ~ O
/\ TN
DP VP katya, O
‘ /\ N
Katya V DP (O brian,

is Brian McCook

Question: do we need any As in our intransitive “Smiley danced” or transitive “Smiley teased Frowny”
trees? Answer: No, in these cases, the constants are already functions, so no As are necessary.

(74) S (teases(frowny))(sterny);
DP VP sterny, tease(frowny) , ;)
| RN T
Sterny 'V DP teases(. (0 ;) frowny,

teases Frowny

Question: but I’ve seen semantics textbooks which give the meaning of fease as Ax.1y.tease(x)(y),
and the meaning of cat as Ax.cat(x). The answer is “eta-reduction”.

(75) n-reduction (informal): Any term Au.¢ (1) is equivalent to ¢*
By n-reduction, the following are equivalent.

(76) a. Ax.dog(x) = dog
b. Ax.Ay.tease(x)(y) = tease

“Lambdas are so closely associated with meaning analysis that it can be hard for people to see that
they are not constitutive of a proposal about a particular denotation” (Potts 2007:86)

Intuitively, why is n-reduction guaranteed to work?
What’s the difference between Ax.dog(x) and Ay.dog(y)? What about dog(y) and dog(x)?

The equivalences discussed should be reminiscent of set theory, highlighting the isomorphism
between sets and functions.

a7 A={x|xe A}
dog = Ax.dog(x)
{x|[xedl={yl|yeAd}

Ay.cat(y) = Ax.cat(x)

/o o

450 long as u is not free in ¢
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Case study 2: Reflexives

How are English sentences with -self pronouns in object position interpreted?

(78) The child dressed herself.
John helped himself.
I saw myself (in the mirror).

Sue’s father dressed *herself/himself.

/o o

Conventional wisdom (from Lees and Klima 1963): a -self pronoun has to be ‘co-referential’ with a
c-commanding DP. This means that the DP’s sister must dominate the -self pronoun. If this structural
relationship doesn’t hold, reflexive-‘binding’ is impossible.

(79) S *S
/\ /\
DP VP
Sue v DP PossP  DP
| | ] \ \
dressed herself Sue’s father dressed herself

Using functional meanings, we can derive this analysis. We can provide a partial explanation of the
informal ‘binding principles’ of, e.g., Chomsky 1981.

(80) S ~ dress(sue)(sue) : ¢
/\ /\
DP VP sue: e O :{e,t)
| RN N
Sue \Y% DP dress: (e,{e,t)) O

dressed herself
This analysis allows us to see why Sue can’t antecede herself in (78-d). First a semantics for father:
(81)  father ~~ the.father.of : (e,e)

Describe what kind of function [the-father-of] is.

Explain why the account in (80) explains the ‘c-command’ generalization.

(82) S . O:t
/\ /\
O O {e.r)
PossP  DP DP sue: ¢ the-father-of : (e,e) dress: (e, (e,t)) O

Sue’s father dressed herself
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Revisiting connectives

Our type space allows the type ¢, and therefore (z,¢), and therefore (z, (¢,1)), ((¢,2),t), ad infinitum.
We have an obvious use for functions from truth values to truth values: connectives!

Earlier we proposed a type ({e,?), (e,?)) negation function. But what about a type-(t,?) version?

(83) [-]=|T —F
F T

This might come in handy for sentential modifiers like:

(84) a. it’s false that ~ — : (t,t)
b. it’s not the case that ~ — : (t,t)

Or languages which have negation attaching at the S-level, like Maori.

(85) Kaore [i-mau tetahi tuna kotahii a Tamahae].
not  PAST-catch INDEF eel one by PERS Tamahae
Tamahae didn’t catch one eel. Chung and Ladusaw 2004:28

(86)  kaore ~~ —: (t,t)

Let’s propose meanings for the other connectives.

87) S ~»  rain! A sunny!,
S ConjP rain!; O
it’s raining Conj S (O sunny!;

and it’s sunny

What about or?

(88) S ~ rain! — —sunny!,
/\ /\
CondP S O O

Cond S NegP S O rain!; -, sunny!,

if  it’s raining it’s not the case that it’s sunny

So we have two negations to play with. Below they have As filled in,

(89) a. not~ Aps.—(p):(t,t)
b, not~ Afie sy Axe.—(f(x)) : ({e.1),(e.t))

As you saw in Homework 4, and isn’t always at the sentence level.
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No child skateboards and no child studies.

(90) a.
b. No child skateboards and studies.

(C2)) a. Every child skateboards and every child studies.
b.  Every child skateboards and studies.

We also need it for the ambiguity of the following:

92) Frowny is not tall and thin.

93) Where is the VP-level and attaching?
What would it’s type be (assuming that the conjoined VPs are type (e,?))?
What’s a ML translation for VP-level and?

What about or?

/o o

Modifiers as functions

Let’s revisit adjectival modifiers. In Handout 6, we conceptualized adjectives as a function from an
input [N]-meaning to an output [Adj N]-meaning. What type would an adjective be?

This type coheres with our earlier conceptualization of adjectives as functions from sets to sets.

©4)  [skillful]M = 0O ! ~oo |
loe} -loe|
ol -lo]

But TY doesn’t use sets, so we have to convert any set to a function. What would this look like?

(95) [skillful] is a function mapping CFs (in D, ;)) to CFs (in D, ;)), such that for any d and
any f,if [skillful]( f)(d) =T, then f(d) =T.

(96) [alleged] is a function mapping CFs (in D, ;)) to CFs (in D, ;)), such that...

o7 [former] is a function mapping CFs (in D (¢ 1)) to CFs (in D ;)), such that for any d and
any f, if [alleged](f)(d) = ?, then f(d) =?.

(95) holds all subsective adjectives, including intersective adjectives like Swedish. But intersective
adjectives can be given an even more refined semantics.

98)  Swedish ~~ Ag.Ax.swedish(x) A g(x) : {{e,1), (e, 1))

Explain why this ML translation for Swedish ensures that (95) holds.

Can we do the same for skillful? Which of the following works better?

99) a.  skillful ~ skillful : ((e,t),{e,t))
b.  skillful ~ Ag.Ax.skillful(x) A g(x) : {{e, ), (e, 1))

Remember the invalid inference from Handout 6:

(100) Smiley is a skillful student.
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Smiley is a violinist.
#Smiley is a skillful violinist.

Composing quantifiers

In Handout 5 we conceptualized quantificational determiners as relations between sets:

(101)  a. [every] ={(A,B)| A< B}
b. [some] ={(A4,B)| AN B # @}

Of course, TY uses CFs instead of sets, so we’ll have to use the same trick as we did for subsective
adjectives. Let’s convert (101-a) to be fully functional one step at a time.

First let’s specify a function from sets to their supsersets (informally, we’ll think of (101-a) as a
function from A to the set of possible Bs).

(102) [every] = the function Det s.t. for any f C U, Det( f) is the set of sets g, s.t. f C g.

(103)  [every]M = {©®} .—>{{©®}}
 ~leoolol
@ -~loolel
E -0 @}@}{0)9

(104)  Assuming that [saxophonist] = { @ } and [swimmer] = { @ ,@ 1,

what is [every(saxophonist)]?

What type do you think every(saxophonist) is?

The next step is reconfiguring the output of [every] as a CF over sets. How would you describe the
following CF in words?

(105)  [every(saxophonist)|M = ]

1©.0f ~1
@) e
[®

} > F

—F
(106) [every(saxophonist)[M = the function Q such that
The final step is converting any sets of individuals to CFs. We’ve already seen how to do this.

(107) [saxophonist] = the function f such that for any d € U, f(x) = T iff d is a saxophonist.

Now we can give a semantics for every in TY.
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(108) every is a function Det € D (¢ 1),((e,s),t)) Such that for any f € Dy, Det(f) = the
function Q, such that for any g € D, ;, Q(g) = T iff forany d € D, if f(x) =T, then

g(x) =

Obviously our previous denotation for every was much simpler and readable. Thankfully, we can
use a notational shortcut to switch back and forth between CFs and sets.

(109) If f €Dy, then fou ={x| f(x) =T}
(110) [swimmer]M = _® s T | [swimmer]M = { @ @ }
@ — T

@ —F
_ —F

A bit of terminology A is the characteristic function of the set Ay, and A is the characteristic set of
the function A.

Using this notation, we can give functional denotations for our determiners:

(111) levery(P)(Q)] = Tiff [P]« € [Q]«
[some/any(P)(Q)] = Tiff [P« N[Q]« # 9

[not every(P)(Q)] = Tiff [P].  [Q]« # 0
[n0(P)(Q)] = Tiff [P N[Q] =0

[most(P)(Q)] = Tiff |[[P]« N [Q]«] > [[P]+—[Q]+]
[at least three(P)(Q)] = Tiff |[P]« N [Q]«| >3

-0 A0 o

Let’s make sure we understand (also note the common type-abbreviations):

(112) S - Or

. w 5 e
skateboards,;

NP skateboards eVerY (e orr) SWIMMEr,;

\ PN

every swimmer

Give a set of plausible and consistent denotations for each node:

(113) a. VP
b. NP
c. D,asin(111-a)
d. DP
e. S
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Possible paper topics

e The semantics of -self pronouns, reflexives of other varieties, and so on, is a goldmine for
syntax-semantic research. The theory in this handout gets pretty far, but needs extension to
reflexives in other positions, like in PPs and subjects of infinitives. The theory in this handout
comes from Barker 2016; Barker and Shan 2014; Winter 2016. Some good resources for the
syntactic side, Kiparsky 2002 and Charnavel and Sportiche 2016. There’s also the issue of
reciprocals like each other (see Dalrymple et al. 1998), and unbound reflexives (see Charnavel
2018).

e Another big issue touched upon here, the syntax of negation. See Kim and Sag 2002; Sag
et al. 2019; Zeijlstra 2004, and many others. Do all languages have this dichotomy between
(t,t)-negation and sub-sentential negation? What about other connectives?

Further reading
e Much of the material here comes from Winter 2016:83—4, and Potts 2007:84-6.

e For more detail about all these issues, I recommend Carpenter 1997:§1 and Cann, Kempson,
and Gregoromichelaki 2009:§3.

e An alternative view on the issues raised here is found in Heim and Kratzer 1998. Their
semantic theory is very similar in appearance to the one proposed here, but they collapse
notions of a metalanguage and model, and (presumably for this reason) their interpretation
function [ ] takes natural language as its input and returns A-expressions as its output.
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